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Chapter 1

Introduction

Phases are regions within a system where the physical properties of the material
are homogeneous. When a single system contains multiple phases at the same
time which can freely exchange material these phases are said to coexist. A com-
mon example of a liquid system with coexisting phases is that of oil and vinegar.
At room temperature the oil and vinegar resting in the same dish are separated
into clearly defined regions. However, with vigorous stirring we can force the oil
and vinegar to mix into one homogeneous blob. Left untouched, over time the
oil and vinegar will begin to separate from one another, a process called demix-
ing, eventually reforming the two separate phases found in the unstirred system.
The behavior is even more interesting when we acknowledge the relatively com-
plex molecular makeup of each phase. Oils may contain many different types
of lipids, proteins and waxes. Vinegar is a mixture of acetic acid, water and
possibly other chemicals for flavor or color. Why does the system demix? How
does the system know which kinds of molecules to group together? To answer
these question we must explore the thermodynamics of phase separation.

The simplest examples of systems with coexisting phases are found in two-
phase systems like oil and vinegar. Similar demixing behavior can be observed
in many other physical systems. Classical examples are polymer solutions and
metal alloys [2]. In alloys the phases may represent a mixture of atoms in
different ratios on a crystal lattice. In polymer systems they may correspond
to different fraction of polymers in a polymer-solvent mixture, or to different
packing structures. [2]

While many systems exhibit interesting equilibrium phase behavior, we may
also be interested in phase-separation as a dynamic process. The transitions
from a perturbed, out of equilibrium state (the stirred system in the case of oil
and vinegar) back to equilibrium involves the complex rearrangement of mate-
rial. This development of a quantitative physical description of this transition
is thus quite challenging.

Additionally, from a technological point the transient structures formed dur-
ing this process may have more useful physical properties, so understanding and
ultimately controlling or halting the phase separation process is of practical in-
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8 CHAPTER 1. INTRODUCTION

terest.
Despite its difficulty, the dynamics of a two phase system which is undergoing

a transition from the homogeneous to the phase-separated state is an old, and
well studied problem [13]. This process in which initially well-mixed system
develops small regions of different phase which grow and rearrange over time
is know as coarsening. The growth law proposed by Lifshitz and Slyozov is a
classical result in the study of coarsening dynamics and has been extensively
studied. A phenomenological theory which describes the full spatial evolution of
coarsening processes was given initially by Cahn and Hilliard [5]. Although their
theory was used initially to explain the coarsening dynamics found in alloys [11],
in recent years it has found a wide range of applications in seemingly unrelated
systems from the migration of bacterial colonies [6] to the patterning of mussel
beds [15].

Biological systems are of particular interest both because of their complexity
and prevalence in nature, but also from the point of view of general pattern
formation. In order to sustain life biological systems must maintain themselves
in states far from equilibrium. Thus, much of what we know from equilibrium
and near-equilibrium systems does not apply in the context of biological systems.
However, this complexity also allows for a wide range of fundamentally new
behavior.

More recently, the existence of liquid-like droplets of material have been
discovered to coexist within the cytoplasm of cells [4]. Even more interesting is
the discovery that biological systems are capable of using the physics of phase-
separation to serve some biological function [12], and that

“liquid-liquid phase separation of the cytoplasm may be an impor-
tant principle for the spatial organization of the cell.” - Lee et al

Actively driven chemical processes are a characteristic feature of life within
cells. We find of particular interest the recent work by Zwicker et al which
provides an example of a subcellular biological process combining liquid-liquid
phase separation in the cytoplasm with actively driven chemical reactions. It is
found that the nematode worm Caenorhabditis elegans uses specifically autocat-
alytic chemical reactions to tightly control the creation of centrosomes (large,
subcellular structures) in time.

While demixing in phase-separating mixtures containing first order chem-
ical reactions have been studied for a limited set of parameters, a thorough
exploration of possible patterning behavior in such systems remains incomplete
[14] [9] [8]. Additionally, possible morphologies resulting from autocatalytic
reactions remains largely unexplored.

In this thesis we aim to modify a very general model for two-phase isotropic
systems through the inclusion of both first-order and autocatalytic chemical
reaction schemes. The temporal evolution spatial patterns is studied for a large
set of systems of differing compositions, temperatures and reaction rates.



Chapter 2

General features of two
phase systems

There is much that can be learned about two-phase systems without the need to
develop a complex or specific molecular model. In this chapter we will introduce
a minimal model capable of two-phase behavior as well as general analytical
techniques which shall be used throughout this thesis.

We begin by developing the phenomenological description of these systems
first introduced by Landau. Various limiting cases are analyzed and the condi-
tions for the stability of the homogeneous, well-mixed, solution are identified.
Lastly, we extend the model to include time dynamics and introduce a simple
method for including chemical reactions.

2.1 Physical description of binary fluids

We are interested in phase separation in fluids, and while in general fluids con-
tain long range interactions, like convective flow, for simplicity we restrict the
set of systems to those composed solely of short range interactions causing dif-
fusive motion and chemical reactions. Additionally, all systems are considered
incompressible and with constant volume and external pressure.

We consider a model containing two molecular components, A and B, where
the local amount of each component can be described in terms of its volume
density, respectively φA and φB . We assert that together A and B fill space, i.e.
φA + φB = 1, which implies that φA and φB are uniquely determined by their
difference: φ = φA − φB . φ is a function of space and time.

The free energy of a system completely determines it’s equilibrium morphol-
ogy. In this section we introduce the Landau phenomenological free energy as a
description of a two component fluid. Using this description we determine the
conditions for one and two phase equilibrium states as well as an equation of
motion for near-equilibrium systems.
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10 CHAPTER 2. GENERAL FEATURES OF TWO PHASE SYSTEMS

The Landau free energy describes isotropic systems with a phenomenological
term that assigns an energetic cost to spatial inhomogeneities. We assume local
equilibrium, i.e. that the system can be treated as equilibrium on short length
scales and over long times. The free energy can be derived by first assuming a
functional form

F =

∫
V

f (φ,∇φ, T ) ddx , (2.1)

where V is constant and f may depend on arbitrary powers of φ and its spatial
derivatives. Assuming that the derivatives of φ are small, we take the gradient
expansion of f up to second order, discarding higher order terms which scale
rapidly with the characteristic length scale of the system. Keeping all the terms
allowed by the symmetry group of an isotropic fluid in combination with either
no flux or periodic boundary conditions leaves us with the following expression
for the free energy, often called the Landau free energy [7]

F (φ, T ) =

∫
V

{
f (φ, T ) +

κ

2
(∇φ)

2
}

ddx , (2.2)

where κ ≥ 0. Equilibrium is defined as the state where no net fluxes of material
or energy exist. When gradients in the chemical potential µ are sufficiently
small the flux jφ of φ may be approximated as

jφ = −m∇µ , (2.3)

where m is a proportionality factor called the mobility which for simplicity
we assume to be independent of φ. The chemical potential µ is given by the
variational derivative of F

µ =
δF

δφ
. (2.4)

Evaluating the functional derivative we see that the equilibrium state φ(x) sat-
isfies

µ =
∂f

∂φ
− κ∇2φ = const , (2.5)

while the average volume fraction

Φ(t) ≡ 1

V

∫
V

φ(x, t)ddx , (2.6)

simultaneously satisfies the material conservation law

Φ(t) = Φ0 . (2.7)

We note that (2.5) is almost always nonlinear and very often analytically in-
tractable. In general the free energy density f(φ, T ) depends on the specific
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mixture in question and may be an arbitrarily complex function. We can how-
ever analyze a simple, model free energy density, which accurately describes a
large class of systems given a certain set of assumptions.

Assume first that we are interested in the behavior of the system near its
critical point, where it undergoes a continuous phase transition at the temper-
ature Tc. Next, we assume that the particles A and B are sufficiently similar
in their self-interactions that the free energy density can be taken to exhibit
φ↔ −φ symmetry. This allows us to expand the free energy in an even power
series of the form

f(φ, T ) = f0 + aφ2 + bφ4 +O(φ6) , (2.8)

where both a and b can in principle depend on T . We know that b must be
positive in order that forms of f exist with two stable minima. The simplest
free energy density which satisfies these criteria is

f(φ, T ) = (T − Tc)φ2 + bφ4 . (2.9)

For all temperatures T ≥ Tc the f contains a single minimum at φ = 0. For
temperatures T < Tc f has two minima equally spaced about φ = 0 and is
called a double-well potential (see figure 2.1).

2.2 Equilibrium

In “classical” equilibrium thermodynamics systems are considered homogeneous
and thus gradient terms like those in (2.2) are not considered. We can regain
a classical form from (2.2) by setting κ = 0. In this case, the equilibrium
configuration is determined by the free energy density (2.9) and the average
volume fraction (2.7). Inserting this free energy density into (2.5) results in

2 (T − Tc)φ+ 4bφ3 − κ∇2φ = const , (2.10)

which is a condition for equilibrium in a simple quartic free energy density
model. When T > Tc the minimization (2.10) is accomplished by φ(x) = Φ0, a
homogeneous field. The gradient squared term in this case is everywhere zero,
and so the classical and Landau free energies have the same solution.

When T < Tc the free energy density takes the form of a double well poten-
tial. If the average volume fraction Φ0 is in between the two minima of f the
system will be able to lower its classical free energy by dividing its material into
regions of differing phase. The local volume fraction in these regions are φm−
and φm+

, which are the values of φ at the minima of f . Specifically, Φ0 must
satisfy

φm− < Φ0 < φm+
(2.11)

in order for a lower energy configuration to exist in the case κ = 0. When this
condition is met the equilibrium configuration contains two coexisting phases.
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Figure 2.1: A double well potential forms as temperature is increased beyond
Tc. Two minima allow the possibility of coexisting phases.
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As f is an even function they are symmetric about zero, and we can refer to them
simply as ±φm. We can solve for ±φm in terms of the free energy parameters

±φm = ±
√

(Tc − T )

2b
(2.12)

In figure 2.2 we show the phase space for the externally controlled parameters
T and Φ0 with the two-phase region shaded in blue. The line separating the
one and two phase regions is called the binodal.
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Figure 2.2: Phase portrait showing binodal and spinodal lines for free energy
density f(φ) = (T − Tc)φ2 + 1/2φ4. Above the binodal the equilibrium state
has single, homogeneous phase. Beneath it the equilibrium state has coexisting
phases. Beneath the spinodal a homogeneously prepared system is unstable
and coarsens via spinodal decomposition. Between the spinodal and binodal a
homogeneously prepared system is metastable and coarsens via nucleation and
growth.

When we allow κ > 0 in one dimensional systems of finite size the solutions
to (2.10) and (2.7) take on the form

φ (x) = ±φm tanh

(√
|T − Tc|

2κ
(x− x0 (Φ0))

)
, (2.13)
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where x0(Φ0) is parameter which adjusts the location of the interface in the
system so as to satisfy (2.7) [16]. In this solution we see the formation of a
single, continuous interface separating two largely homogeneous regions. The
width of this interface is proportional to

√
κ. In the limit κ→ 0 we regain the

piecewise constant solution which satisfies a classical free energy. We contrast
the set of solutions obtained in this limit with the much larger set obtained when
one begins with a classical free energy, i.e. first taking κ → 0, then solving for
φ(x). The latter contains all piecewise constant functions φ(x) ∈ ±φm which
satisfy the global conservation constraint (2.7), which may contain arbitrarily
many regions, each separated by an infinitely sharp interface. In figure 2.3 we
show typical examples for the one and two-phase solutions, as well as showing
the effect of κ on the shape of the interface.
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Figure 2.3: The tanh solution which minimizes the Landau free energy (2.2) is
compared for various values of κ. Note that all solutions have the same average
value Φ0 and correspond to the same free energy density, giving fixed values
for ±φm. An example piecewise constant solution to the classical free energy
without gradient terms is shown for comparison (dashed black line).

The tanh solutions under the limit κ→ 0 are contained within the larger set
of classical solutions as the subset with minimal interfacial area. Area minimiza-
tion is observed in real systems as a result of surface tension. The Landau free
energy can be seen as introducing an effective surface tension between phases,
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the strength of which is controlled by the parameter κ.

2.3 Nonequilibrium dynamics

If a system at equilibrium in the one-phase region of phase space is rapidly
cooled and brought into the two-phase region it will undergo a morphologi-
cal rearrangement while finding the new equilibrium configuration. This rapid
cooling is known as a quench and the resultant change of the system from a
one-phase to a two-phase morphology is called coarsening. Here we use Landau
theory to analyze the non-equilibrium dynamics which take place during this
transition.

We derive a dynamical equation describing the time evolution of the field
φ(x) by combining the relations (2.3) and (2.4) with the equation for local
material conservation. φ is locally conserved, and thus obeys the continuity
equation

∂tφ+∇ · jφ = 0 , (2.14)

which results in what is know at the generalized diffusion equation

∂tφ = m∇2 δF

δφ
. (2.15)

Taking for F a general form of the Landau free energy results in

∂tφ = m∇2

(
∂f

∂φ
− κ∇2φ

)
. (2.16)

Because the free energy density f(φ, T ) is in general nonlinear this equation
is often analytically intractable. However, we can get some information about
the short-term dynamics of a system near a fixed point through the technique
of linear stability analysis. Fixed points are states of the system that do not
change with time, i.e. when ∂tφ = 0. Using stability analysis we can determine
how the system will respond to infinitesimal perturbations, which are always
present in a real system at non-zero temperature.

First, we see that the equation has a fixed point when φ(x, t) = Φ0, i.e.
when the system is homogeneous or well-mixed. Linearizing about this point we
set φ(x, t) = Φ0 + ε(x, t), where ε is a field of infinitesimal perturbations. This
results in

∂tε = m∇2
(
b2 − κ∇2

)
ε , (2.17)

where

b2 =
∂2f

∂φ2

∣∣∣∣
Φ0

. (2.18)

The linearized partial differential equation is converted into an eigenvalue equa-
tion
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∂tε̃ = λ(q)ε̃ (2.19)

by taking the Fourier transform of the spatial variables ε̃(q) = Fε (x), with

λ (q) = −mq2
(
b2 + κq2

)
. (2.20)

Then making the transformation to dimensionless variables q → q/L and λ →
λ/T we can form the dimensionless groups mT |b2|/L2 and κ/|b2|L2. From
these we derive a characteristic length L =

√
κ/|b2| and characteristic time

T = κ/m|b2|2. We now write eq. (2.20) in dimensionless form as

λ (q) = −q2
(
±1 + q2

)
, (2.21)

which we plot in fig. 2.4.
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Figure 2.4: Growth rate λ of sinusoidal perturbation as a function of wavenum-
ber. Linear stability analysis gives the growth rate as λ (q) = −q2

(
±1 + q2

)
.

When b2 < 0 positive growth rates exists for some frequencies (see blue line)
and the homogeneous state φ(x) = Φ0 is unstable, leading to coarsening and
phase separation.

Modes q which result in λ > 0 are unstable and will grow initially, while
modes that give λ < 0 are stable and will not grow. The existence of unstable
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modes implies that a simple one-phase equilibrium solution is not possible and
the system will phase separate. From this we can see that the condition b2 < 0
is necessary – although not sufficient – for the homogeneous state to be stable.

Regions of f(φ) with negative curvature are linearly unstable to infinites-
imal perturbations and homogeneous systems with Φ0 in this region proceed
spontaneously to separate into two phases. This spontaneous demixing process
is called spinodal decomposition. There is another coarsening process distinct
from spinodal decomposition that is not amenable to linear stability analysis.
When a system is stable with respect to infinitesimal perturbations, but is not
in equilibrium we say that it is metastable. This leads to a different kind of
coarsening dynamics called nucleation and growth where large fluctuations are
necessary in order to begin the transition to equilibrium.

In the quartic model free energy density the instability condition b2 < 0 can
be rewritten as

T < Tc − 6bφ2 . (2.22)

We show this region in the phase plot in figure 2.2 highlighted in red. The line
defined by b2 = 0 – the inflection points of f – is called the spinodal. The area
between the spinodal and binodal is the region of metastability, where quenched
systems coarsen via nucleation and growth. Below the spinodal is the purely
unstable region, where quenched systems coarsen via spinodal decomposition.

In real systems the large fluctuations necessary to bring a metastable system
to equilibrium arise naturally from the randomness inherent in thermal systems.
In the next chapter we develop a simple, stochastic molecular model capable of
exploring both of these coarsening processes.

2.4 Chemical reactions

One aim of this thesis is to explore how chemical reactions affect these coarsening
processes. In this section we introduce a simple extension of the model to
accounting for chemical turnover.

An additional term R(φ) describing this turnover is added to the dynamical
equation (2.16) giving

∂tφ = m∇2 δF

δφ
+R(φ) . (2.23)

The functional form of R(φ) depends on the type of chemical kinetics at play,
but in general the rates are derived from the stoichiometric description via the

law of mass action. For example, the first order reactions A
kAB



kBA

B are described

by the rate equations

∂tφA = −kABφA + kBAφB

∂tφB = −kBAφB + kABφA ,
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which can be rewritten in terms of φ as

R = ∂tφA − ∂tφB = kBA − kAB − (kBA + kAB)φ . (2.24)

First-order reactions result in a rate function R(φ) that is first-order in φ. Like-
wise second-order reactions result in a second-order rate function. Here we
replace R(φ) in (2.23) with the more explicit form in terms of the first order
rate constants

∂tφ = m∇2 δF

δφ
− (kBA + kAB)φ+ (kBA − kAB) , (2.25)

Later in this thesis we will investigate the effects of both first and second-order
reactions on the dynamical and steady-state behavior of active, one and two-
phase systems.

It should be made clear that the method used here to account for chemical
reactions is valid only in a description of active systems. That is the energy
required to drive the chemical reactions can be seen as coming either from
inside the system (ex. via the consumption of a molecular fuel like adenosine
triphosphate) or outside the system as in the case of a light source powering
photo-activated reactions.

Because we are dealing with active systems an important distinction must be
made between true thermodynamic equilibrium, in which there are no net fluxes
of material or energy, and the less restrictive case of steady-state behavior, in
which fluxes may exist but are constant in time. In our discussion of chemically
active systems we restrict ourselves to the latter.



Chapter 3

Lattice model

In this chapter we develop a simple, stochastic molecular model which will allow
us to explore the dynamics of an active, phase-separating fluid with chemical
reactions and thermal fluctuations.

The discrete nature of the model allows for a simple account of the local
attractive and chemical interactions, as well as for simple algorithms to simulate
the stochastic, diffusive motion.

3.1 Definition of lattice model

We begin with a square 2D lattice g = {g1, g2, ..., gN} with a particle at every
vertex v taking on one of two types gv ∈ {A,B}. An energy Jgvgv′ is associated
with each pair of nearest neighbors 〈v, v′〉 which results in a total configurational
energy

H(g) =
∑
〈v,v′〉

Jgvgv′ (3.1)

The sum is over all pairs of nearest neighbors on a square lattice with periodic
boundaries, such that every vertex has degree four. We define the energy Jgvgv′
associated with each pair to have A ↔ B symmetry

JAB = JBA (3.2)

JAA = JBB (3.3)

We are interested in non-equilibrium dynamics of coarsening processes and
the dependence of these properties on environmental parameters like temper-
ature, local energetic interactions Jgv,gv′ and chemical reaction rates. When
switching from a continuous description in terms of a continuous order param-
eter φ to a fully discrete system we need a new method for mathematically
describing the system’s phase properties. In the continuous model systems with
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phase coexistence are characterized by an order parameter which is not con-
stant in space. In the lattice model the variables which define a configuration
of the grid take on discrete values (A or B), so the conditions describing phase
coexistence must be stated in terms of some spatially averaged quantity. Also,
systems described by the same set of macroscopic parameters have different
instantaneous morphologies, which requires that we look at quantities which
average over an ensemble of states.

There are many different quantities one may use to characterize the coars-
ening process in such models which take these considerations into account. The
configurational energy, droplet size distribution, two-point correlation function
and structure factor are all capable of extracting similar information [1]. We
will predominantly use the structure factor S defined

S (q) =
1

NA

〈∑
m,n

exp (iq (Rm −Rn))

〉
, (3.4)

where NA is the number of A particles and both m and n are indices which run
over each A particle in the system. The variable Rm is the position vector for
the mth A particle with units of length and q is the Fourier pair or R. The
angle brackets above represent an average over an ensemble of systems. For
fluid systems isotropic symmetry allows us to reduce S to a function of scalar q.
The structure factor gives the distribution of Fourier modes in the system, and
thus is a measure of the typical size of regions or domains of a certain phase.
As the system changes over time these domains will move and change in size,
and this will be reflected by changes in the structure factor.

3.2 Equilibrium properties

3.2.1 Equilibrium statistical mechanics

As we transition from a course grained, continuous description of the system
to one in terms of microscopic variables we must also switch from a purely
thermodynamical description to a statistical mechanical description. In this
section we develop that description and relate it to the continuum model when
possible. This will enable us to more easily compare the predicted behavior
resulting from these different classes of models.

The free energy of a system is given according to statistical mechanics as

F = −kBT lnZ , (3.5)

where Z is the partition function. For the lattice model it take the form

Z =
∑

states

e−βH(g) , (3.6)

where the sum is taken over all lattices configurations subject to the constraint
that the total number of A and B particles is conserved. This free energy is
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minimized at equilibrium, where the probability of observing any state of the
grid g is then given by the Boltzmann distribution

P (g) =
1

Z
e−βH(g) , (3.7)

which is the energy distribution which maximizes entropy. We will be interested
in other thermodynamic quantities in addition to the free energy. The value at
equilibrium of some quantity f(g) of the system is given by its expected value
under the Boltzmann probability distribution

〈f〉 =
1

Z

∑
states

f (g) e−βH(g) . (3.8)

Calculating 〈f〉 is difficult to perform analytically because of its enormous com-
plexity. The length of the sum in the partition function is equal to the number
of possible permutations of the grid, which scales as n2!, n being the number of
vertices or (equivalently) the number particles on a side of the grid. The diffi-
culty in calculations of this type necessitates the use of computer simulations.

3.2.2 Metropolis algorithm for computing ensemble aver-
ages

One of the principle methods of numerically attacking a calculation of the form
(3.8) is via Markov Chain Monte Carlo integration [3]. These are a class of
techniques in which a random sequence of states (g(1),g(2), ...,g(n)) of the lattice
is generated, and the quantity of interest 〈f〉 is obtained as a direct average over
the N states in this sequence, i.e.

〈f〉 ≈ 1

N

N∑
i

f(g(i)) , (3.9)

where the approximation becomes exact in the limit N → ∞ assuming that
the number of times a state appears in the chain is proportional to its true
probability in the distribution P (g) we wish to sample. This is achieved by
ensuring that the transition probabilities ω(g → g′) satisfy a condition called
detailed balance

P (g)

P (g′)
=
ω(g′ → g)

ω(g→ g′)
. (3.10)

Under the Boltzmann distribution this ratio of probabilities is equal to

P (g)

P (g′)
= e−β4H , (3.11)

where 4H = H(g′)−H(g). While an infinite number of possible values for the
individual transition probabilities will satisfy this ratio, the maximum proba-
bility one can choose is



22 CHAPTER 3. LATTICE MODEL

ω(g→ g′) = min(e−β4H, 1) , (3.12)

often called the Metropolis probability. If the current state of a Markov chain is
g(i) we choose the next element in the following way. First a comparison state
g′ is chosen at random – exactly how the comparison state is chosen we will
cover in the next section. We set the next state in the chain g(i+1) according
to the following rule

g(i+1) =

{
g′ if rand(0, 1) < ω(g(i) → g′)

g(i) if rand(0, 1) ≥ ω(g(i) → g′)
(3.13)

where the number rand(0, 1) is a random number evenly distributed on the
interval [0, 1). This is a very simple procedure for a computer to perform which
allows us to quickly sample a large number of states. The necessary number of
states of course depends on the nature of the probability distribution we want
to replicate, the properties of the quantity 〈f〉 in which we are interested, and
the desired accuracy. Note that this technique is intended to sample equilibrium
properties of the system. In our study of phase transitions we are also interested
in dynamic properties. In section (3.3) we shall see how to extend this technique
in order to obtain information about dynamical quantities.

3.2.3 Relationship to continuous description

The mean-field free energy for such a model depends solely on the fraction
φA = NA/n

2, φB = NB/n
2 of A and B particles present in the lattice. The

expected energy per nearest neighbor pair is then

u = JAAφ
2
A + JBBφ

2
B + 2JABφAφB . (3.14)

The entropic component of the free energy is given by the entropy of mixing,
which results in an entropy per vertex

s = −kB
∑

i∈{A,B}

pi ln pi = −kB (φA lnφA + φB lnφB) . (3.15)

Taking the thermodynamic limit results in a free energy density

f(φA, φB) = JAAφ
2
A + JBBφ

2
B + 2JABφAφB + kBT

1

2
kB (φA lnφA + φB lnφB) .

(3.16)
Using the linear relations

φA =
1

2
(1 + φ) (3.17)

φB =
1

2
(1− φ) (3.18)
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we can write f as a function solely of φ

f(φ) = −1

4
Ωφ2 +

1

4
kBT ((φ+ 1) log(φ+ 1) + (1− φ) log(1− φ)) , (3.19)

where we have removed additive constants and defined

Ω ≡ (2JAB − JAA − JBB) (3.20)

Here Ω can be thought of as the energy change per vertex when an A-A pair
and an B-B pair are converted into two A-B pairs If Ω is positive then segrega-
tion of components is energetically beneficial, and can dominate the behavior at
low temperature where entropic effects are negligible. If Ω is negative then the
components want to mix, and the system will be homogeneous for all tempera-
tures. The free energy (3.19) is symmetric in φ. This potential also exhibits a
transition from a single well to a double well shape as we lower the temperature
beyond its critical value (figure 3.1), which we determine by the condition that
the second derivative of f

∂2
φf (φ, T ) =

1

2
Ω +

1

4
kBT

(
2

1− φ2

)
(3.21)

is zero at φ = 0, which leaves

kBTc = Ω . (3.22)

In figure 3.1 we plot the free energy density derived from this lattice model
for various values of the temperature near Tc. The conditions determining the
binodal and spinodal lines are the same as (2.11) for the simple quartic free
energy density (2.9)

−φm < Φ0 < φm (3.23)

where ±φm are the potential minima. In this case we cannot solve for the
function φm(T,Ω) explicitly, however we can still create the phase plot using

kBTm(φ,Ω) =
2φΩ

log(φ+ 1)− log(1− φ)
(3.24)

where Tm is the temperature along the binodal line. From the above free energy
f(φ) we derive the following phase diagram (figure 3.2), showing the one and
two phase regimes as a function of temperature and average volume fraction Φ0.
We have also highlighted within the two-phase region the areas corresponding
to the different coarsening processes.
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Figure 3.1: free energy density as a function of composition φ derived from
the mean-field, continuum limit of the lattice model for various values of the
temperature near Tc = Ω.
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Figure 3.2: Phase portrait showing stable, unstable and metastable regions of
phase space as a function of temperature and composition Φ0. The binodal
and spinodal lines are taken from the free energy density (3.19) which we have
derived from the lattice model under the mean-field approximation in the con-
tinuous limit. The phase portrait is qualitatively similar to that from the simple,
quartic free energy density used in chapter 2 (see figure 2.2). Above the binodal
the equilibrium state has single, homogeneous phase. Beneath it the equilibrium
state has coexisting phases. Beneath the spinodal a homogeneously prepared
system is unstable and coarsens via spinodal decomposition. Between the spin-
odal and binodal a homogeneously prepared system is metastable and coarsens
via nucleation and growth.
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3.3 Nonequilibrium dynamics via Kawasaki ex-
change

We also investigate the dynamics of phase separation in the absence of advective
currents, when thermal forces drive the motion of the particles. We consider
initially homogeneous systems which are not yet in equilibrium. In order to
simulate the system’s progression towards equilibrium as a Markov process we
associate each transition in the sequence (g(1),g(2), ...,g(n)) with a length of
time τ . In order to interpret the sequence of states as the time evolution of
the system towards equilibrium the transition probabilities ω must satisfy two
conditions.

1. The detailed balance condition (3.10). This ensures that the equilibrium
state is stable.

2. The probability distribution pv for a particle on the grid satisfies the dif-
fusion equation in some appropriate limit.

the difference in the probability that the particle v can be found at r evolves
according to

pv(r, t+ τ)− pv(r, t) =
−2

n2
pv(r, t) +

1

2n2

[
pv(r +4x1, t) + pv(r−4x1, t)

+ pv(r +4x2, t) + pv(r−4x2, t)
]
,

(3.25)

where the first term on the right hand side represents the flux of probability
away from the point r, and the second term in parenthesis represents the flux
from the neighboring vertices in to the point r. The perpendicular displacement
vectors 4x1 and 4x2 have length `. We can rewrite the right hand side as the
sum of two terms, each of which is a discrete second derivative

pv(r, t+ τ)− pv(r, t)
τ

=
`2

τ E

[
pv(r +4x1, t)− 2pv(r, t) + pv(r−4x1, t)

` 2

+
pv(r +4x2, t)− 2pv(r, t) + pv(r−4x2, t)

` 2

]
,

(3.26)

then taking the limits `→ 0 and τ → 0 we arrive at the diffusion equation

∂tpv = D∇2pv . (3.27)

Here we have replaced ` and τ using the equality

D =
` 2

2n2τ
. (3.28)
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The key point in our derivation of (3.27) was that particles explore the lattice via
the random exchange of nearest neighbors, a process called Kawasaki exchange
[17]. This process is an undirected random walk, well known to result in diffusive
motion. We should note that purely diffusive motion is only the behavior we
expect from the system when the inter-particle energetic interactions are weak,
resulting in currents which are driven by entropic effects. This is taken into
account in the derivation above by assuming that the probability of flipping
nearest neighbors is independent of the type of particles flipped.

Now, l and n is the number of vertices on a side. We write the probability
distribution of a single particle v at position r on the lattice at a time t as
pv(r, t). If we select a pair of nearest neighbors at random from the grid and
flip them then

3.4 Chemical reactions on the lattice

In this section we cover the procedure of adding chemical reactions to the lattice
simulation. This boils down to assigning the probabilities P (A → B, τ) and
P (B → A, τ) that a particle will switch type within the span of one timestep τ
as a function of its local, microscopic environment.

3.4.1 First order reactions

For the case of first order reactions A
kAB



kBA

B the particles undergo reactions

without the aid of a catalyst. In the lattice model this means that the probabil-
ities P (A → B, τ) and P (B → A, τ) are independent of the types of neighbors
the particle has on the grid. Also for first order reactions a direct correspon-
dence can be drawn between this probability and the macroscopic reaction rates
kAB and kBA by solving equation (2.25) in the mean field approximation.

φ (t) =
Γ2

Γ1
+

(
φ0 −

Γ2

Γ1

)
e−Γ1t (3.29)

where Γ1 = kBA + kAB and Γ2 = kBA − kAB and φ0 = φ(t = 0). We transform
this equation using the linear relations (3.17). Under the mean field approxi-
mation the probability of finding a particle of type A (B) at any point on the
lattice is equal to φA (φB). Using the initial conditions for A particles φ0 = 1
and for B particles φ0 = −1 then leaves us with the following probabilities

P (A→ B, t) =
1

2

(
1− Γ2

Γ1

)(
1 + e−Γ1t

)
(3.30)

P (B → A, t) =
1

2

(
1 +

Γ2

Γ1

)(
1− e−Γ1t

)
(3.31)
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(a) time interval: 219 Kawasaki Exchange steps
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Figure 3.3: (a) Diffusive dynamics via Kawasaki exchange algorithm from square
initial conditions with side length of n = 50 grid points. (b) The average of the
grid along vertical dimension is compared with the analytic solution to the
diffusion equation over a space of length 2L, the time intervals above agree in
accordance with equation (3.28).
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3.4.2 Autocatalytic reactions

We also investigate the non-symmetric case of autocatalytic second order reac-
tions

A+B
kq→ 2B (3.32)

B
kBA→ A . (3.33)

The evolution of the field φ(x) is then described by

∂tφ = m∇2 δF

δφ
+ kqφ

2 − kBAφ− kq + 1 (3.34)

When the field can be approximated as homogeneous φ(x) = Φ the equations
describing the growth of the average composition Φ reduce to

∂tΦ = kqΦ
2 − kBAΦ− kq + kBA . (3.35)

This equation is nonlinear and a solution Φ(kq, kBA, t) only exists in the limit
when the timescale for reactions is much longer than that for diffusion, such
that kqτ << 1. Equating the rates above with that given from the lattice
model under the mean-field approximation we find that

P (A→ B) =
1

4
kqCB(v)t (3.36)

P (B → A) = kBAt , (3.37)

where CB is the number of B neighbors the particle has. This agrees with our
understanding of the molecular process in that if an A particle has more B
neighbors it is increasingly likely to react with one of them.
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Chapter 4

Stationary state
morphology

In this chapter we investigate the steady state properties of the lattice model.
We are interested in the dependence of a system’s morphology on it’s tempera-
ture, composition and reaction rates. By performing Monte Carlo simulations
of the lattice model we will be able to visualize this morphology and quantify
important properties like the structure factor S(q) and average composition Φ.
All simulations are performed using the Kawasaki exchange method for simulat-
ing the diffusive dynamics, while the chemical reaction dynamics are performed
using the methods described in the previous chapter, (see eqs. (3.37 and 3.31)).
For our purposes a system is defined to be in stationary state when the mean
wavenumber 〈q〉 and the average composition Φ are constant in time. Limited
computational power prevents restricts the length of time which we are capable
of simulating for systems of a given size, which limits our ability to a steady
state. Additionally, our ability to judge whether a system has reached steady
state is complicated by the fluctuations which are inherent in the Metropolis
algorithm (3.12).

4.1 Passive system

The sequence in figure 4.1 shows the evolution of two phase-separating systems
through time, along with their structure factors. We see how the systems coarsen
with time and how the structure factor is a capable measure of this coarsening.
The systems differ in their temperature, and we clearly see that increasing
the temperature tends to blur the boundaries between phases as interfacial
energy minimization becomes less important to the total free energy. This is
also reflected in the structure factor, where a single well defined peak only exists
at lower temperatures.

According to mean-field theory the equilibrium morphology of the passive
lattice model is a function of scaled temperature T/Ω and composition Φ0 (see

31
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(a) Timeseries t = 0, 1x104, 1x105 [`2/D] for Φ0 = 0 at temperature T/Ω = 0.4

(b) structure factors for time points (a). Horizontal axis q [2π/n`].

(c) Timeseries t = 0, 2x104, 1x105 [`2/D] for Φ0 = 0 at temperature T/Ω = 0.6
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(d) structure factors for time points (c). Horizontal axis q [2π/n`].

Figure 4.1: Red (Blue) = A (B) type particles. Blue curves show structure factor
defined (3.4). Panels (a) & (b) for system with scaled temperature T/Ω = 0.4.
Panels (c) & (d) for system with scaled temperature T/Ω = 0.6. Square grids
with side length n = 256.
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fig 3.2). Systems with temperature above kBTc = Ω are homogeneous (see eq.
(3.22)). Then, as the temperature is lowered the system is expected to undergo
a continuous transition into the two phase region and phases of differing com-
position coexist in equilibrium. We ran simulations of the lattice model over a
range of temperatures and compositions, exploring the equilibrium morphology
and making comparisons to mean field theory. In figure 4.2 we show systems
near equilibrium for differing values of T and Φ.

At low temperature we also expect the equilibrium morphology to be gov-
erned by the minimization of interfacial energy, and less by entropic effects.
In the limit where the minimization of surface energies dominates completely
we expect “soap bubble” morphologies, where the exact shape is governed by
boundary conditions and the composition of system. We see in figure 4.2 that
the interfaces dividing phases are sharper and more rounded at lower tempera-
ture (two systems on the right). For scaled temperature T/Ω >> 1 we expect
a homogeneous morphology (see eq. 3.22). Again in figure 4.2 we see that the
phase regions are gone for the higher temperature systems (on the left), and the
system is homogeneous.

In figure 4.3 the mean value of the wavenumber 〈q〉 is taken from the struc-
ture factor distribution and shown as a function of the scaled temperature T/Ω
and average volume fraction Φ0. We can see that 〈q〉 undergoes a continuous
transition over a range of temperatures centered about the critical temperature
predicted from mean-field theory, Tc/Ω = 1. 〈q〉 is a measure of the (inverse)
characteristic length of structures in the system. Smaller values indicate larger
domains. In these grids with n = 256 there is a maximum value (≈ 90) which
indicates that domains have a characteristic length which is the size of the lattice
spacing i.e. that the system is completely mixed. The transition from the phase
separated morphology to the homogeneous mixture takes place at lower temper-
atures for systems with greater |Φ0|. This is in agreement with the predictions
of the mean field theory, and can be seen in the phase plot (figure 3.2) by fol-
lowing lines of decreasing temperature and constant Φ0. We also observe that
the transition takes place more rapidly as the temperature is varied for systems
with large |Φ0| while systems with Φ ≈ 0 exhibit a longer, slower transition.

4.2 First Order Reactions

Here we investigate steady state morphologies of systems with first order A↔ B
reaction kinetics. In the continuous limit these steady states are solutions to
eq. (2.23) with ∂t = 0:

m∇2 δF

δφ
− Γ1φ+ Γ2 = 0 . (4.1)

where Γ1 = kAB + kBA is the symmetric rate and Γ2 = kBA − kAB the asym-
metric rate. These reaction rates completely determine the composition Φ(t)
through time and result in a steady state value



34 CHAPTER 4. STATIONARY STATE MORPHOLOGY

(a) Asymmetric composition Φ0 = −0.9. Temperature: Left T/Ω = 1.5. Right T/Ω = 0.4

(b) Symmetric composition Φ0 = 0. Temperature: Left T/Ω = 1.5. Right T/Ω = 0.4

Figure 4.2: Red (Blue) = A (B) type particles. Near equilibrium morphology,
t = 5x105 [`2/D]. Square grids with side length n = 256. Other compositions
and temperatures have been tested, but are not shown here.
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Figure 4.3: Mean wavenumber 〈q〉 from the structure factor S(q) (3.4) as a
function of temperature. Φ0 is the composition, a constant in passive systems.
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Φ = Γ2/Γ1 . (4.2)

More interesting behavior is apparent in the affect of these reactions on spatial
patterns in phase separating systems. It has been shown that the system is
prevented from coarsening indefinitely when first-order reactions are introduced
[10]. We can see this behavior clearly in figure 4.4, where we show systems of
different Γ1 which have stopped coarsening. The asymmetric rate Γ2 is fixed at
zero, which fixes the composition Φ(t) = Φ0 = 0.

Systems with first order reactions maintain patterns of a characteristic size
in steady state. In figure 4.4 we contrast systems with different symmetric,
first-order reaction rates Γ1. As Γ1 is increased the speed of mixing is increased
relative to the speed of coarsening which causes the characteristic size of steady-
state patterns to decrease.

In figure 4.5 we show the mean wavenumber 〈q〉 in steady state which dis-
plays a clear dependence on Γ1. Over a range of 100 < Γ1`

2/D < 104 we see
roughly logarithmic dependence of 〈q〉 on Γ1. There appears to be a critical
rate above which the system is fully mixed and increasing the reaction rates
further has no effect on the morphology. For small Γ1, 〈q〉 is limited by the
finite size of our simulation lattice and the finite simulation time, but we do not
predict a fundamental theoretical limit to the maximum mean size of steady
state patterns. The orange markers show the average volume fraction Φ, which
for the case of first order reactions agrees with the mean field result Φ = Γ2/Γ1.
They are included here to contrast with the autocatalytic scenario.

4.3 Autocatalytic Reactions

Here we investigate steady state morphologies of systems with one autocatalytic
and one first order chemical reaction

A+B → 2B (4.3)

B → A . (4.4)

In the continuous limit these steady states are solutions to eq. (2.23) with
∂tφ = 0

m∇2 δF

δφ
+ kqφ

2 − kBAφ− kq + kBA = 0 . (4.5)

Considering a spatially constant field φ(x) results in the steady state condition

kqφ
2 − kBAφ− kq + kBA = 0 . (4.6)

We ran two sets of simulations for autocatalytic systems. In the first we vary
the total rate kBA + kq while keeping the ratio kq/kBA fixed. In figure 4.6 we
can see snapshots of the steady state behavior for three characteristic values
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(a) Timeseries t = 0, 2.5x104, 1x105 [`2/D]. Γ1 = 51 [D/2n2`2]

(b) Timeseries t = 0, 2.5x104, 1x105 [`2/D]. Γ1 = 1.9 [D/2n2`2]

(c) Timeseries t = 0, 2.5x104, 1x105 [`2/D]. Γ1 = 0.0027 [D/2n2`2]

Figure 4.4: Red (Blue) = A (B) type particles. Average composition Φ = 0.
Temperature T/Ω = 0.5. Three timeseries show systems with three different
first-order reaction rates. Rates are listed under the panels and are higher for
the upper panels.
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Figure 4.5: Left vertical axis (purple marks): mean wavenumber 〈q〉 from struc-
ture factor (3.4) of autocatalytic system. Right vertical axis (orange marks):
average composition Φ. Horizontal axis: symmetric first-order reaction rate
Γ1 = kBA + kAB . Asymmetric rate fixed Γ2 = kBA − kAB = 0. Temperature
fixed T/Ω = 0.5
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of the total rate. As in the case of first order reactions, the introduction of
chemical turnover results in patterns of a finite mean wavelength to persist in
steady state. Increasing the rate of this turnover relative to diffusion causes the
characteristic scale of these patterns to decrease.

Additionally, in autocatalytic systems the average composition Φ is related
to the morphology. The autocatalytic reactions occur most frequently at the
interface between phases, where the number of A-B edges is greatest. This
allows the autocatalytic reactions to have a stronger effect in systems with
smaller wavelength patterns as they also have more interfacial area. The net
effect is that as the reaction rates are increased (while keeping the ratio kq/kBA
constant) the fraction of B particles in the composition increases as can be seen
in figure 4.6.

A quantitative comparison of the mean wavenumber from the structure fac-
tor 〈q〉 and Φ is made from these simulations and the results are shown in figure
4.7 as a function of kBA for fixed ratio kq/kBA = 2.

As with first order reactions, the average mean wavenumber 〈q〉 from the
structure factor decreases as we increase the rate of reactions. Unlike in first-
order systems we also see a clear, inverse relationship between Φ in steady
state and 〈q〉. We can understand this as an increase in the strength of the
autocatalytic reactions when the system is well mixed, due to the increase in
the number of A-B edges. Nonsmooth behavior of 〈q〉 and Φ in the range
kBA`

2/D < 0.01 are transient artifacts, and are expected to disappear with
longer simulations, when the system can get closer to steady state.

In the homogeneous field approximation we can make a prediction for Φ in
steady state which depends only on the ratio kq/kBA. The nonlinearities in (4.5)
prevent a general analytical solution for Φ(kq, kBA) even in the limit t→∞. In
figure 4.8 we explore the effect of the temperature on Φ in steady for different
values of kq. The horizontal axis shows the ratio kq/kBA. We can see the role
of the morphology clearly in this case, as the steady state Φ varies over a wide
range for systems with the same reaction rates, but different temperatures.
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(a) Timeseries t = 0, 2.5x104, 1x105 [`2/D]. kq , kBA = 200, 100 [D/2n2`2]

(b) Timeseries t = 0, 2.5x104, 1x105 [`2/D]. kq , kBA = 2.0, 1.0 [D/2n2`2]

(c) Timeseries t = 0, 2.5x104, 1x105 [`2/D]. kq , kBA = 0.02, 0.01 [D/2n2`2]

Figure 4.6: Red (Blue) = A (B) type particles. Initial composition Φ0 = 0.
Temperature T/Ω = 0.5. Autocatalytic rate kq and first order backrate kBA
vary between systems.
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Figure 4.7: Left vertical axis (purple marks): mean wavenumber 〈q〉 from struc-
ture factor (3.4) of autocatalytic system. Right vertical axis (orange marks):
average composition Φ. Horizontal axis: B → A reaction rate kBA, varied along
line of constant kq/kBA = 2.0. Temperature is fixed at T/Ω = 0.5
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Figure 4.8: Average composition Φ as a function of kq (plotted as the ratio
kq/kBA with kBA = 1 [D/2n2`2]). Warmer colors show higher temperatures
as given in the legend. Black dashed line gives mean-field prediction when
φ(x) = Φ.



Chapter 5

Coarsening Dynamics

In this chapter we investigate the dynamic properties of phase separating sys-
tems. We will focus on exploring the effects of chemical reactions on the coars-
ening process and on compositional changes to the system.

In the previous chapter we saw how chemical reactions could effectively halt
the coarsening process at the cost of continued input of energy from an external
source. However, we have not yet explored how the system approaches this
steady state. Coarsening in both passive and active systems is driven by the
systems desire to minimize the interfacial area between phases. However when
chemical reactions are present the systems additionally undergo a mixing process
which competes with coarsening. It can be helpful to view this competition
as one between short-range attractive interactions and a long-range repulsive
interaction between regions of similar phase [8] [10]. This will be helpful for
our interpretation of the dynamics of chemically reactive systems in both the
first-order and autocatalytic cases.

5.1 Passive systems

We know from Landau theory that coarsening continues indefinitely in passive
systems, unless limited by system size (see section 2.2). We expect the structure
factor to decrease in time, until it reaches a saturation point and halts. The
average composition Φ is an external parameter of the system in the absence of
chemical reactions which allows us to study the behavior of 〈q〉 alone. In this
section we explore the dynamics of this coarsening, and investigate how this
behavior depends on temperature and composition.

To investigate the effects of composition on these growth dynamics we ran
simulations of the lattice model with temperature T/Ω = 0.45 for a range of
compositions −0.9 < Φ < 0. The morphology of two passive, phase-separating
systems is shown in figure 5.1 over time for systems with compositions 0 and
−0.9.

Although both systems are initially homogeneous, we see them undergo
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(a) Time shown in upper left corner (units [`2/D]). Composition is Φ0 = 0.

(b) Time shown in upper left corner (units [`2/D]). Composition is Φ0 = −0.9.

Figure 5.1: Red (Blue) = A (B) type particles. Passive systems with different
composition undergoing coarsening. Temperature fixed at T/Ω = 0.4

two qualitatively different types of coarsening. In systems with even ratios
of components we see large, connected regions or “labyrinth patterns” which
tend to minimize their interfacial area by forming increasingly rounded shapes.
This contrasts with systems which have largely uneven compositions, in which
“droplets” quickly form rounded shapes which minimize their own surface area.
The system then coarsens by allowing some, usually larger, droplets to grow at
the expense of others, which decreases the total interfacial area of the system.

To explore the effect of temperature and composition on the growth dy-
namics in a more quantitative way we looked at the evolution of the mean
wavenumber 〈q〉 (t) from the structure factor through time. We expect 〈q〉 to
decrease with time in systems which undergo coarsening, eventually reaching a
steady state value in finite size systems. When the system is near the critical
temperature this steady-state value is sensitive to changes in both tempera-
ture and composition. However, when we are far from the critical temperature
(T/Ω < 0.5 T/Ω > 20, data not shown) 〈q〉 collapses to a single value. This
value is unaffected by small changes in temperature or composition. In fig-
ures 5.2 and 5.3 we show 〈q〉 (t) over a range of temperatures for two different
compositions Φ = 0, −0.9.

We see in figure 5.2 that increasing the temperature decreases the rate of
coarsening as well as increasing the steady-state value of 〈q〉. Fluctuations are
strongly reduced for the lowest temperature T/Ω = 0.45, which is the point
of total phase separation for all Φ0 (see figure 4.3). System at T/Ω = 0.45
exhibits power-law domain growth similar to 〈q〉 ∝ tα with α = −0.34. This is
comparable with the exponent α = −1/3 predicted by standard Lifshitz-Slyozov
growth [13].

We see in figure 5.3 that the temperature has a stronger affect on growth
rate when the system has an uneven composition, as compared with the Φ0 = 0
system shown in figure 5.2. Fluctuations are visibly increased in comparison
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Figure 5.2: Log-log plot of mean wavenumber 〈q〉 as a function of time in a
passive system with Φ0 = 0. Warmer colors show higher temperature. Dashed
black line has slope -0.34.



46 CHAPTER 5. COARSENING DYNAMICS

10-1 100 101 102 103 104

time [`2 /D]

101

102

〈 q〉 [2
π
/n
`]

 
〈
q
〉
 over time, Φ0 =−0.9

0.45 Ω

0.6 Ω

0.75 Ω

0.9 Ω

1.05 Ω

1.2 Ω

1.35 Ω
1.5 Ω

Figure 5.3: Log-log plot of mean wavenumber 〈q〉 as a function of time in
a passive system with Φ0 = −0.9. Warmer colors show higher temperature.
Dashed black line has slope -0.40.
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with Φ = 0 system. Additionally in figure 5.3 power-law growth of domains
〈q〉 ∝ tα is observed with α ≈ −0.40.

5.2 First order reactions

In systems with first order chemical reactions A ↔ B the desire to organize
into domains of constant phase fights against the mixing caused by chemical
turnover. The introduction of these rates determines a limit to the coarsening
and allows patterns of finite wavelength to persist in steady state (figs. 4.5, 4.4).

In this section we explore the dynamic effects of these reactions on the
structure factor mean 〈q〉 (t). To do this we ran simulations for a wide range
−4 < log10 Γ1 < 6 of values of the symmetric rate Γ1 = kBA + kAB .
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Figure 5.4: Log-log plot of mean wavenumber 〈q〉 as a function of time in an
active system with first-order chemical reactions. Asymmetric rate Γ2 = 0.
Warmer colors show higher symmetric rate Γ1 [D/2n2`2]. Temperature T/Ω =
0.5. Dashed black line has slope -0.27.

We see in figure 5.4 that a steady state 〈q〉 is reached more quickly by
systems with higher Γ1. We also observe a power-law behavior 〈q〉 (t) ∝ tα with
α ≈ −0.27 in all systems with Γ1 < 10−1, small enough that coarsening could be
observed for significant time. This is a significant deviation from the exponent
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α = −0.34 in passive systems with the same composition, but may be the result
of the competition between the effective pushing and pulling forces introduced
at the beginning of the chapter.

5.3 Autocatalytic reactions

In autocatalytic systems we see the same competition that is observed in first
order systems between coarsening due to phase separation and mixing due to
chemical reactions. Additionally, it is already apparent from Landau theory
that the behavior of the composition Φ(t) can no longer be treated separately
from the morphology. The nonlinearities introduced by autocatalysis in the
continuous equations (3.34) prevent us from decoupling the evolution of the
average composition Φ(t) from the local composition φ(x, t).

To investigate the effects on the composition we simulated the lattice with
autocatalytic reactions for a range of values of the reaction rates kq and kBA. In
figure 5.5 we plot Φ(t) from simulations of the lattice model with autocatalytic
reactions. The individual rates kq and kBA are varied, but their ratio is fixed
kq/kBA = 2. We can that Φ(t) exhibits non-monotonic behavior at early times
for a range of reaction rates near kBA = 10−1 [D/2n2`2]. Initially the system is
well mixed which allows the autocatalytic reaction to drive the composition to a
state of predominantly B particles. As the system coarsens the interfacial area
decreases and the autocatalytic reactions slow down, allowing the first order
rate kBA to drive the system back to a state of predominantly A particles.

We have also briefly explored the dynamics of domain growth in autocat-
alytic systems through analysis of the mean wavenumber 〈q〉 from the structure
factor (3.4). In figure 5.6 we show 〈q〉 over time on a double-logarithmic scale
for different values of the autocatalytic reaction rate kq. The first-order back
rate is fixed kBA = 1. We see power-law coarsening independent of kq of the
form 〈q〉 ∝ tα where α = −0.20. This rate is lower than both the coarsening
exponent found in passive systems with Φ = 0 of α = −0.34 and the exponent
found in active systems with first-order chemical reactions α = −0.27.
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Figure 5.5: Composition Φ over time in an autocatalytic system. Warmer colors
show higher reaction rate (log10 scale) kBA with units [D/2n2`2]. Temperature
fixed at T/Ω = 0.5. The ratio kq/kBA = 2.0 is also fixed.
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Chapter 6

Summary

In this thesis we studied the properties of isotropic, binary mixtures undergoing
phase separation in chemically reactive fluid. The introduction of chemical
reactions into the description of coarsening leads to range of interesting behavior.

6.1 Steady state behavior

In systems at low temperature T/Ω < 0.45 we see sharper lines between regions
of differing phase. Domains exhibit rounded morphologies. As we increase
the temperature T/Ω > 0.45 the interface between domains begins to blur
noticeably as the entropic effects become more important. In passive systems
we observe a continuous transition in 〈q〉 over a range of temperatures near
the critical temperature predicted by mean-field theory Tc = Ω (eq. 3.22).
At scaled temperatures T/Ω < 0.45 and T/Ω > 10 the mean wavenumber
〈q〉 collapses to a single value. The phase behavior of the system in these
regions is insensitive to changes in either temperature or composition. Passive
systems coarsen indefinitely, as no competing mechanism exists to counter phase
separation. The characteristic scale of structures in steady state is only limited
by the size of the system and the amount of material. In phase separating
systems with actively driven first-order chemical reactions of the form

A
kAB



kBA

B (6.1)

we observe patterns of a finite characteristic scale which persist in steady state.
This characteristic length scale in decreased as we increase the rate of chemical
reactions. The average composition of these systems is determined completely
by the chemical reaction rates, and takes on a value in steady of Φ = kBA−kAB

kBA+kAB
.

In systems with the actively driven chemical reactions

A+B
kq→ 2B (6.2)

B
kBA→ A (6.3)
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we observe a dependence of the total speed of reactions on the system’s mor-
phology in addition to the domain size scaling seen in first order systems. In
phase separating systems autocatalytic reactions are driven more strongly when
the total interfacial area between phases is greater. This leads to a complex
dependence of the steady state composition on both the reaction rates kq and
kBA and the scaled temperature T/Ω.

6.2 Coarsening dynamics

In both passive and active systems we observe coarsening dynamics which tend
to minimize the interfacial area between phases. At scaled temperatures below
T/Ω = 0.45 two qualitatively different coarsening patterns exist. Systems with
more even amounts of A and B particles form “labyrinth patterns” which mini-
mize the total interfacial area by changing the shape of domains to make them
more round. Systems where one particle type dominates form a large num-
ber of round “droplets”. The system minimizes its interfacial area by allowing
some (usually larger) droplets to grow while others dissolve. In all systems the
growth of the characteristic size of domains seems to increase until a maximum
growth rate is reached, at which point it follows a power law. The scaling
exponent decreases when chemical reactions are introduced, leading to slower
coarsening rates. We interpret this slowing down as a competition between
short range attractive forces and an effective long range pushing force between
regions of similar phase. In passive systems we observe power-law coarsening
which is not inconsistent with classical Lifshitz-Slyozov behavior. In active sys-
tems with either first order or autocatalytic chemical reactions we see smaller
exponents α indicating slower coarsening rates. Additionally in active systems
non-monotonic behavior of the composition Φ(t) over time is observed as a result
of the interplay between system morphology and the autocatalytic reactions.

6.3 Outlook

• One of the most interesting prospects for this work is the ability to study
the effect of chemical reactions on the scaling exponents α. To do this in
a quantitative way does not require any modifications to the simulation
algorithms, but only a significant amount of computational time.

• Allowing for an effective “polymerization” between adjacent components
as described by the Flory-Huggins model may be able to extend the rel-
evance of our simulations to descriptions of gels, which exhibit a wide
variety of phase behavior.

• Clearly, the complexity of behavior available in systems of this type is
limited in part by the number of components. While many physical sys-
tems can be successfully modeled as consisting of only two components,
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extending this model to three or greater may introduce rich new types of
behavior.
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