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ABSTRACT

Removal of noise from fluorescence microscopy images is
an important first step in many biological analysis pipelines.
Current state-of-the-art supervised methods employ convolu-
tional neural networks that are trained with clean (ground-
truth) images. Recently, it was shown that self-supervised
image denoising with blind spot networks achieves excellent
performance even when ground-truth images are not avail-
able, as is common in fluorescence microscopy. However,
these approaches, e.g. Noise2Void (N2V), generally assume
pixel-wise independent noise, thus limiting their applicability
in situations where spatially correlated (structured) noise is
present. To overcome this limitation, we present Structured
Noise2Void (STRUCTN2V), a generalization of blind spot net-
works that enables removal of structured noise without requir-
ing an explicit noise model or ground truth data. Specifically,
we propose to use an extended blind mask (rather than a single
pixel/blind spot), whose shape is adapted to the structure of
the noise. We evaluate our approach on two real datasets and
show that STRUCTN2V considerably improves the removal of
structured noise compared to existing standard and blind-spot
based techniques.

Index Terms— image denoising, deep learning, CNN,
self-supervised, structured noise

1. INTRODUCTION

Removal of noise in fluorescence microscopy images is often
an important step in many imaging projects to facilitate visu-
alization, and further downstream processing such as image
segmentation, detection or tracking [1, 2, 3, 4]. This applies
especially to biological microscopy, where the signal-to-noise
ratio (SNR) is often a compromise of different requirements,
especially in live-cell imaging (phototoxicity, temporal reso-
lution, etc.).

Machine learning based image denoising has recently
started to outperform strong engineered methods (such as
NLM [5] or BM3D [6]), in both image quality and pro-
cessing speed (e.g. [7]). The gap between engineered and
learned methods has widened even more since the advent
of deep learning (DL). In particular, convolutional neural
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Fig. 1: For noisy microscopy images of C. majalis (a), our ap-
proach STRUCTN2V (d) can remove horizontal noise artifacts,
which N2V (c) is unable to do (ground truth shown in (b)).
Autocorrelation (f) of a pure noise image (e) reveals the hori-
zontal shape of the structured noise pattern. Insets in (c) and
(d) depict the blind masks used during training of the CNNs.

networks (CNNs) have shown remarkable improvements
for many image restoration tasks, including image denois-
ing [8, 9, 10, 11]. Image restoration based on CNNs has
also shown substantially improved results for fluorescence
microscopy images [4].

However, learned methods have the disadvantage that
they need to be trained, which is typically done via super-
vised learning, requiring pairs of noisy input images (with
low SNR) and desired output images (with high SNR), called
ground truth (GT). High-SNR ground truth images are typ-
ically acquired by increasing the light intensity or exposure
time. However, many samples are too fragile or sensitive to
handle the higher light intensities required to reduce noise.

Lehtinen et al. [12] have shown that neural networks for
image denoising can also be trained with pairs of only low-
SNR images, using one image as training input and one as
ground truth. However, applicability of the method is lim-
ited for microscopy. To achieve the best restoration quality,
it is crucial that each image pair of input and ground truth
is very well aligned or registered, depicting the same im-
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age structures, and only differs in terms of corruption (i.e.,
noise). In practice, fast biological processes can elude the
repeated exposures required to record such data, rendering
the method impractical. Furthermore, when attempting to de-
noise already acquired datasets, it is often impossible to col-
lect additional images of similar characteristics for training.

Recent self-supervised denoising approaches have allevi-
ated these issues of training data acquisition to a large ex-
tent. Krull et al. [13, 14] (N2V) and Batson and Royer [15]
proposed methods to train denoising CNNs without requir-
ing training pairs. During training, these methods use the
same noisy image as both input and ground truth. To en-
able training and prevent the network from simply learning
the identity, they follow a particular training procedure: they
calculate the loss only at individual pixels, which have been
previously masked (replaced with random values) in the input
image. The masked pixels are referred to as blind spots.

Self-supervised methods do not require the collection of
additional training data, making high-quality image denois-
ing via CNNs accessible to a wide range of bioimage data
incompatible with supervised training. However, this strat-
egy comes with a caveat. It is based on the assumption that
the noise in each pixel of a given image is generated inde-
pendently. More formally, the noise in any two pixels is as-
sumed conditionally independent given the true noise-free im-
age. While this typically holds true for the most dominant
sources of noise (such as Poisson shot noise and additive read
out noise), it poses a limitation in practical microscopy. In
practice, due to the acquisition process in many microscopes
the noise can be highly correlated among neighboring pixels
(see Fig. 1) and causes N2V and other self-supervised meth-
ods to produce poor results [13].

Here, we introduce Structured Noise2Void (STRUCTN2V)
to address this problem. To that end, we go beyond the as-
sumption of pixel-wise (conditionally) independent noise and
demonstrate how N2V can be extended, by masking not in-
dividual pixels but a larger area during training. Our method
yields substantially improved restoration quality for images
with locally correlated noise. That way, we facilitate the prac-
tical application of self-supervised CNN denoising on an even
wider array of real bioimage datasets.

2. METHOD

Each of the recent self-supervised denoising methods [13, 15,
16] is trained1 such that the same noisy image is used both
as input and prediction target. However, in order to prevent
the model from learning the identity function, pixels in the
model output on which the loss is evaluated (active pixels)
must be hidden in the input.2 This forces the model to predict

1Note that we only consider CNN training here.
2While in theory optimal performance is achieved by using a single ac-

tive target pixel, in practice there are typically multiple (spread-out) masked
pixels to enable more efficient training.

Fig. 2: (a) Masking schemes for N2V (left) and two variants
of STRUCTN2V (middle, right). Shown are the active pixel
(red), the hidden blind mask (blue) and the pixels available
(green) to the network to predict the value of the active pixel.
(b) Example crops of pure noise images and their spatial au-
tocorrelation (Corr) for pixel independent (Gaussian) noise
(left), a dark frame of dataset C. majalis (middle), and a back-
ground frame of dataset C. elegans (right). Note that the spa-
tial extent of the autocorrelation pattern in each case suggests
the corresponding blind mask depicted directly above in (a).

their values from the surrounding pixels. While a reasonable
prediction is possible for a structured signal of interest, the
best prediction for the noise, which is assumed (condition-
ally) pixel-wise independent and zero centered, is its expected
value (i.e., zero). Hence, there is a denoising effect.

A pixel can be hidden by designing a special network ar-
chitecture and receptive field [16]. An architecture-indepen-
dent alternative is pixel masking [13, 15], whereby the loss
is only active for some randomly selected pixels, whose val-
ues in the input image have been replaced (masked) with ran-
dom values drawn from a local neighborhood [13] or uniform
distribution [15]. While designing a special architecture has
practical advantages, it does lack flexibility in hiding more
than a single pixel, which is what we are proposing below.

In the case of spatially extended structured noise, the neu-
ral network will be able to predict the noise contribution to
the value of an active pixel from neighboring noisy pixels.
Removal of such noise will thus fail. To reduce this effect for
a given pixel, we suggest to additionally hide (neighboring)
pixels that contain information about the noise of the active
pixel. Hence, we propose to use an extended blind mask of
pixels that are replaced by random values in the input image.
We still only have the loss active for individual pixels at the
center of the mask. This amounts to decoupling pixels that
are active in the loss (active pixels) from those that are hid-
den in the input (blind mask, cf. Fig. 2). We call our approach
STRUCTN2V. Note that STRUCTN2V includes N2V as a spe-
cial case, when the blind mask and the active pixel coincide
(cf. Fig. 2).

Evidently, hiding additional pixels makes the signal of in-
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Fig. 3: Comparison of Fourier power spectrum of C. ma-
jalis images (a), denoised with N2V (b) and STRUCTN2V (c).
While N2V and STRUCTN2V both reduce noise across the
spectrum, vertical bands in the spectrum (denoted by white
arrows) correspond to horizontal noise artifacts not removed
by N2V. Insets in (b) and (c) depict the blind masks used dur-
ing training.

terest less predictable as well. Hence, a tradeoff exists be-
tween reducing the amount of reconstructed structured noise
and the ability to better restore the underlying signal. There-
fore our approach is only practical if the length scale of cor-
relations of the noise is smaller than that of the signal.

Selecting the blind mask. A suitable blind mask is crucial to
achieve superior results with STRUCTN2V (over N2V). Deter-
mining a good mask automatically is challenging, however,
since the shape of the mask is a tradeoff: it should be as small
as possible, but include pixels whose noise value is (highly)
predictive for the noise at a given active pixel. To guide the
mask selection, it is helpful to compute the spatial autocorre-
lation of the noise (Fig. 1f, Fig. 2): the autocorrelation (Corr)
pattern is typically spatially concentrated, and its support is
often well approximated by a neighborhood of rectangular
size w×h, which we then choose as the blind mask (Fig. 2). A
pure noise image for this analysis can be obtained by selecting
an “empty” area of the image, or by acquiring a so-called dark
frame (i.e., with the shutter closed). Of course, this assumes
that the structured noise is caused or dominated by the readout
process. In some cases, the structured noise is already visible
in the raw data, or can be greatly enhanced by removing only
the pixel-independent noise, e.g. with N2V (cf. Fig. 1c).

3. EXPERIMENTS

We evaluate our STRUCTN2V approach on two fluorescence
microscopy datasets, one (C. majalis) acquired in 2D with
a camera-based spinning disk microscope, the other (C. ele-
gans) in 3D with a laser-scanning confocal microscope.

3.1. C. majalis

We acquired 2D images of fluorescently labeled membranes
of a fixed C. majalis (lilly of the valley) sample. All 100
recorded images (1024×1024 pixels) show the same region
of interest and only differ in their noise. The average of these
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Fig. 4: Comparison of denoising results for dataset C. ma-
jalis via PSNR and SSIM [17]. For STRUCTN2V we use (hor-
izontal) blind masks of size w×1 with varying width w. The
performance of STRUCTN2V initially improves with increased
w before it plateaus / gradually decreases for w ≥ 9. For all
learned methods (N2V, STRUCTN2V, N2GT) we depict the re-
sults of 5 different training runs using different random seeds
(individual dots). Note that all methods to the right of the gray
line are optimized with knowledge of the ground truth.

100 images is considered as ground truth (GT) image3. We
train and compare N2V, STRUCTN2V, and N2GT4 while using
the same neural network architecture for all methods, only the
training procedure is particular to each method.
CNN architecture. We use a U-Net [18] with two levels, us-
ing two 3×3 convolutional layers followed by 2×2 max pool-
ing per level. We learn 16 convolution kernels at level one and
double (halve) that number after each pooling (up-sampling).

Training. We normalize the input images by applying an
(outlier-robust) percentile-based normalization, such that
most pixel values are in the range [0, 1]. We use the en-
tire dataset for both training and evaluation, since there is
no distinction between train and test images for N2V and
STRUCTN2V. However, note that the performance of N2GT is
thus higher (as one would expect in practice), and therefore
represents an upper bound. We train all methods on 1600
random patches of size 256×256 for 600 epochs (batch size
4) with the Adam optimizer [19] at a fixed learning rate of
2 × 10−5. For N2V and STRUCTN2V, we randomly sample
2% of active pixels in each training patch.

For our STRUCTN2V method, we estimate the mask shape
via the correlation of the noise (cf. Fig. 1f) as described in
Section 2. To that end, we use a horizontal mask of size w×1,
whose width w we vary from small (w = 3 pixel) to large

3This is possible because we observe that the noise has spatially constant
mean and is uncorrelated between acquisitions.

4Noise-to-Ground-Truth, i.e. conventional supervised training with the
GT images as target.
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Fig. 5: Qualitative comparison for the 3D C. elegans dataset. We show a single slice of the raw stack and the result of
NLM [5], BM4D [6], N2V [13] and STRUCTN2V (ours). While N2V completely fails to remove any noise, STRUCTN2V yields
a perceptually noise-free image. Insets in N2V and STRUCTN2V depict the blind masks used for training.

(w = 25 pixel, cf. Fig. 2). In Fig. 4, we show denoising per-
formance as a function of mask size, and also compare against
N2V, N2GT, and standard methods. We find that STRUCTN2V
provides an improvement over N2V, although some masks
are clearly better than others (with the mask 9×1 perform-
ing best, cf. Table 1). Importantly, the results of STRUCTN2V
show substantially less structured artifacts compared to N2V,
as can be inferred from the Fourier power spectrum (Fig. 3):
whereas the spectrum of both the raw (left) and N2V restora-
tion (middle) exhibit vertical stripes at a distinct frequency
range (i.e. indicating horizontal correlations), they are absent
in the STRUCTN2V output (right).

Additionally, Table 1 summarizes the best results of all
methods (with a mask of size 9×1 for STRUCTN2V). Note that
NLM, BM3D and N2GT were all tuned/trained to yield opti-
mal results using ground truth data (not available to N2V and
STRUCTN2V), hence the results denote upper bounds on what
is possible in practice. Still, STRUCTN2V performs better than
all compared methods (apart from N2GT, which is expected).

3.2. C. elegans

We additionally demonstrate that STRUCTN2V can substan-
tially outperform N2V on the publicly available 3D dataset
of a developing C. elegans (roundworm) embryo from [3],
which was acquired with a laser-scanning confocal micro-
scope. The data is a time series with 190 frames of size
32×512×708 (ZYX). The images exhibit visually striking
vertical correlations of unknown origin along the Y dimen-
sion. Fig. 5 shows that N2V completely fails to remove any of

Method PSNR SSIM

STRUCTN2V (ours) 29.73± 0.16 0.913± 0.005
N2V [13] 29.03± 0.06 0.8653± 0.0007
NLM [5] 28.14 0.8816
BM3D [6] 29.62 0.9063

N2GT 31.52± 0.19 0.9399± 0.0005

Table 1: Denoising results (PSNR and SSIM [17]) on C. ma-
jalis dataset. Note that we include only the best perform-
ing STRUCTN2V mask (9×1). For all learned methods (N2V,
STRUCTN2V, N2GT) we display the mean (± standard devia-
tion) of 5 different training runs using different random seeds.

the noise, most likely due to the strong vertical correlation of
the noise that renders it easy to predict a pixel’s value from its
immediate neighbor. In contrast, STRUCTN2V yields smooth
and perceptually noise-free images.

Network details. The mask shape for STRUCTN2V was esti-
mated as 1×17×1 (ZYX, cf. Fig. 2). For all compared meth-
ods (N2V and STRUCTN2V) we use a 3D U-Net [20] with two
levels, using two 3×5×5 (ZYX) convolutional layers followed
by 1×2×2 max pooling per level. Again we learn 16 convo-
lution kernels at the first level and double (halve) that number
after each pooling (up-sampling). We also apply the same im-
age normalization as before and train both methods on 1900
random patches of size 32×64×64 for 100 epochs (batch size
10) using Adam [19] at a fixed learning rate of 4× 10−6.

4. DISCUSSION

We proposed STRUCTN2V, an extension of self-supervised
blind spot networks, which allows us to effectively remove
spatially correlated (i.e., structured) noise without the neces-
sity of acquiring clean ground truth images for training. The
efficacy of our method is demonstrated on two fluorescence
microscopy datasets that exhibit challenging structured noise.
We were able to improve upon N2V and engineered image
denoising methods (NLM and BM3D). Our approach relies
on selecting an extended blind mask with the aim of hiding
pixels from the neural network during training, thereby pro-
moting faithful reconstruction of the image signal rather than
of the structured noise.

We discussed several heuristics to select a good mask
shape, which we found effective in practice. Nevertheless,
in future work we would like to devise (semi-)automatic
approaches to select appropriate blind mask shapes.
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